

Agilent ParBERT 81250

Agilent E4809A 13.5 GHz Central Clock Module Agilent E4808A High Performance Central Clock Module Agilent E4805B 675 MHz Central Clock Module

Technical Specifications

Each ParBERT 81250 system consists of at least one clock module, which generates the system clock for at least one generator or analyzer or any mix.

Please see the table to the right for a complete compatibility overview!

Sequencing

The sequencing can be used to specify the data flow:

- single
- looped
- infinitely
- event handling (branch)
- synchronization.

Event Handling

With the event handling the flow of data generation and Analysis can be influenced with external signals at run time.

Usage of Events:

- stop and go of data
- match loop
- intergration with other equipment (ATE)
- trigger on error

For event trigger resources and reaction

Technical Specifications

All specifications describe the instrument's warranted performance. Nonwarranted values are described as typical. All specifications are valid from 10° to 40° ambient temperature after a 30 minute warm-up phase, with outputs and inputs terminate with 50 Ohms to ground at ECL levels if not specified otherwise.

Modules/Central Clock	E4805B	E4808A	E4809A
E4832A - ParBERT 675 Mb/s	•	•	•
E4861A - ParBERT 2.7/1.6 Gb/s	•	•	
E4861B - ParBERT 3.35 Gb/s		•	•
E4810A/11A - ParBERT 3.3.5 Gb/s optical		•	•
E4866A/67A - ParBERT 10.8 Gb/s		•	
N4872A/73A - ParBERT 13.5 Gb/s			•
E4868B/69B - ParBERT 45 Gb/s		•	

E4809A, E4808A and E4805B Sequencing Features			
Number of Segments	1 to 30 (every segment looped once)		
	1 to 60 (no segment looped)		
Looping levels	Up to 4 nested loops plus one optional infinite loop		
	Loops can be set independently from 1 to 2 repetitions		
Start/stop	External input, manual, programmed (stop with E4832A only)		
Event handling	React on internal and external events.		

E4809A, E4808A and E4805B Event Handling

Event trigger sources

Events can be defined as any combination of the following sources.

A maximum of 10 events can be defined.

- 8-line trigger input pod for TTL signals
- VXI trigger lines TO and T1
- Any capture error/or no error detected by one of the analyzer channels
- Software command control: an event trigger command issued locally or remotely

Reactions to an event can be set per data segment immediately or deferred and can be any combination of:

- Data segment jump
- Launch trigger pulse to the trigger output of the Clock Module
- VXI trigger lines TO and T1 can be set to 01, 10 or 11

Master slave, multi-mainframe, different clock groups.

Up to 3 clock modules can be combined to run in one clock grouping by connecting the master slave cable. This is used to combine channels which do not fit into one frame into one clock group. Omitting the master-slave connection will run the channels within separated clock groups. A system can be operated using different clock groups. So a bunch of channels are combined with a clock module. The frequencies used can be totally asynchronous or m/n ratio (see clock input multiplier/divider). For separated clock groups the master slave must not be connected. Within one system the modules must always be of the same type.

E4809A, E4808A and E4805B Trigger Pod characteristics			
Input Lines	8, single-ended		
Input levels	TTL compatible		
Input threshold	1.5 V		
Input termination	5 k Ohm pullup to +5 V		
Absolute max ratings for input voltages	-1.2 V to + 7.0 V		
Cable delay	11 ns typical		
sampling clock frequency	system frequency/segment length resolution		
	TRIGGER OUTPUT CLOCK/REF INPUT		
Setup time*	2.5ns -12.5ns		
Hold time *	5 ns 20 ns		

^{*}includes the cable delay

E4809A 13.5 GHz Central Clock Module

General:

E4809A is a 2-slot central clock module enhancing the capabilities of the E4808A by a 13GHz clock distribution. ParBERT 81250 13.5 Gb/s modules are designed to run with the E4809A 13.5 GHz Central Clock module.

E4809A Clock Module specifications			
Frequency range	20.834	MHz13,5GHz	
Resolution	1Hz		
SSB Phase Noise (at 10kHz offset)	<-75dBc at 10GHz		
Latency (typical)	to trigger output	to channel output	
External Start	16ns ±1clock	tbd ns ±1clock	
	Add 3ns if an expander frame is used		

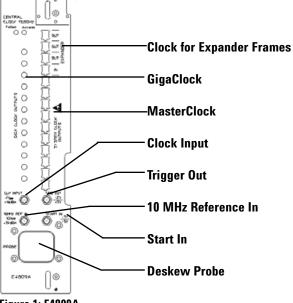


Figure 1: E4809A

Timing Capabilities

The E4809A supports three different operation modes.

• E4809A as system clock

The E4809A distributes clock signals to connected modules in the range from 20.834 MHz up to 13.5 GHz. The E4809A provides GigaClock signals in a range from 500 MHz up to 13.5 GHz to the ParBERT 81250 13.5 Gb/s modules (N4872A, N4873A). All other supported modules are working with the E4809A MasterClock.

• External Clock mode

The system will run synchronously to an external clock, which is connected to the clock module's clock input. There are two different sub-modes available.

In the **direct** clock mode, the PLL (Phase Locked Loop) is bypassed and an external clock signal can be distributed to all GigaClock connected modules. This direct external clock mode is operating in a range from 500 MHz to 13.5 GHz. In this mode the external clock may be FM or PM modulated.

In the **indirect** external clock mode, the clock modules internal PLL is used to generate flexible MasterClock and GigaClock signals.

\bullet Clock Data Recovery (CDR) mode If the CDR is used, the CDR Out of

If the CDR is used, the CDR Out of the Analyzer must be connected to the Clock Input of the Clock module.

Start Input

A data sequence generation can be started by an external signal.

Start Input	
Start Input	DC coupled; 3.5mm(f)
Threshold range	-1.40V to +3,70V
Zin/Termination voltage	50 Ohm typ. / -2V to +3V
Sensitivity/max. levels	200mVpp / -3V+6V

Reference Input

The Reference Input allows ParBERT to run synchronously with an external 10MHz clock. Usage of a continuous clock is necessary. Burst clock can not be used as an external clock.

Reference Input	
Reference Input	AC coupled; 3.5mm(f)
Frequency	10MHz
Input transition/slope	<20ns
Required Duty cycle	50 ±10%
Zin	50 Ohm
Sensitivity	200mVpp

Clock Input

This input runs ParBERT synchronously with an external clock. Usage of a continuous clock is necessary. Burst clock can not be used as an external clock. Two modes are selectable: Indirect external clock mode (clock module PLL is used) and Direct external clock mode (clock module is bypassed).

Clock Input		
Clock Input	AC coupled; 3.5mm(f)	
Frequency range		
Indirect mode	20.834MHz13.5GHz	
Direct mode	500MHz13.5GHz	
Clock Input (Indirect mode only)	m=1256; n=1256	
Multiplier(m)/divider(n)	m*n<=1024; m/n*input	
	frequency must fit data range input	
	frequency/n>=1,3MHz	
Input transition/slope	30 ps typ.	
Zin	50 Ohm	
Sensitivity	<150mV	

Trigger Output

This output will be used to deliver a trigger signal to a DUT, a Digital Communication Analyzer (Agilent 86100B Series) or as a stimulus for the Analyzer deskew.

Trigger Output	
Trigger Output	DC coupled, SMP (f)
Frequency	Tbd
Output transition/slope	70 ps typ. 10/90
Zout/Termination voltage	50 Ohm / -2 to +3V
Output voltage window	-2V to +3V
Output level	0.1 to 1.8 Vpp

E4805B and E4808A Central Clock Modules

The central clock module includes a PLL (Phase-Locked Loop) frequency generator to provide a system clock. Depending on the frequency chosen, the data modules can be clocked at a ratio of 1, 2, 4, 8, 16, 32, 64 or 256 times higher or lower than the system clock.

External start/stop: The data running can be started by an external signal applied to the external input. With module E4832A there is also Stop and Gate mode.

Ext. Clock/Ext. Reference: This input runs ParBERT 81250 synchronously with an ext. clock, or when a more accurate reference is needed than the internal oscillator. Usage of a continuous clock is necessary. Burst clock cannot be used as an external clock. Maximum external clock is 2.7 GHz for the E4805B and 10.8Gbit/s for the E4808A. (Note: no improvement of jitter specifications will be achieved).

Guided deskew: Individual semi-automatic deskew per channel. The deskew probe 15447A allows deskew on the DUT's (Device Under Test) fixture.

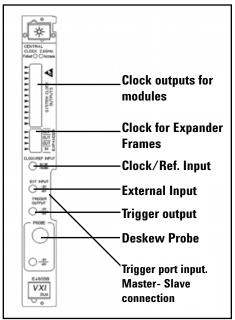


Figure1: Clock Module

E4805B and E4808A Clock	Module specifications	
	E4805B	E4808A
Frequency range*	1kHZ to 675 MHZ	170 kHz to 675 MHz
(can be entered as	E4805B will run with:	E4808A will run with:
period or frequency)		- E4866A/E4867A in range of 9.5GHz to 10.8GHz
E4808A Clock Module specifications	- E4861A in range of 334 MHz to 2.7GHz - E4832A in range of 334KHZ to 675 MHz	- E4861B in range of 20.834 MHz to 3.35GHz- E4861A in range of 334 MHz to 2.7GHz - E4832A in range of 334KHZ to 675 MHz
Resolution	1 Hz	1 Hz
Accuracy	±50 ppm with internal PLL reference	±50 ppm with internal PLL reference

May be limited or enhanced by modules or frontends

External input and ext. clock/ext. ref. input					
	E4805B		E4808A		
Zin/Termination voltage	50 Ohm/-2.10 V to 3.30 V		50 Ohm/-2.10 V to 3.30 V		
Sensitivity/max levels	400 mVpp/-3 V to	+ 6 V	200 mVpp/-3 V to + 6V for < 9.5Gbit/s		
			300mVpp/-3V to+ 6V for > 9.5 Gbit/s		
Coupling	dc,		dc,		
Ext. Input:	Threshold Range:	:-1.40 V to +3.70 V	-1.40 V to +3.70 V		
Ext. Clock/Ext. Ref:	ac		ac		
Input transitions/slope	< 20ns. Ext. input active edge is selectable		< 20 ns. Ext. Input active edge is		
			selectable		
Clock input	m=1256; n=12	56			
multiplier(m)/ divider (n)	m*n<=1024 m/n ³	* input frequency must fit			
	data range input frequency/n>=1.3 MHZ				
PLL lock time	100ms		100 ms		
Input frequency/period	nt frequency/period				
Ext. Clock	170 kHz - 2.7 GHz		170 kHz - 10.8 GHz		
Ext. Ref	1*, 2*, 5, or 10 MHz		1*, 2*, 5, or 10 MHz		
Required duty cycle	50 ±10 %		50 ±10 %		
Latency (typical):	to trigger Output	to channel output	to trigger Output	to channel Output	
Ext. input	16ns ±1 clock	46ns ±1 clock	16ns ±1 clock	46ns ±1 clock**	
Ext. clock	15ns	45ns	15ns	45ns	
	Add 3ns if an expander frame is used		Add 3ns if an expander frame is used		

^{*} Jitter performance may be degraded

^{**} If frequency=667MHz

Trigger Ouput

Can be used in:

- clock mode
- sequence mode

In sequence mode a pulse will be set to mark the start of any segment.

The trigger output runs to a maximum of 675MHZ. If a higher speed performance clock is needed;

- A 2.7GHZ Clock can be obtained from a 2.7 Gb/s channel operated as a pulse port.
- A 10.8GHZ clock is available from the 10.8 Gb/s generated module as clock output.

Trigger output characteristics E4805B and E4808A			
Trigger output signals	- Clock mode (up to 675 MHz). - Sequence Mode		
Output impedance	50 Ohm typ.		
Output level	TTL (frequency < 180 MHz), 50 Ohm to GND ECL 50 Ohm to GND/-2 V, PECL 50 Ohm +3V		
Trigger advance	30 ns typ. between trigger output and data output/sampling point (delay set to zero in both cases)		
Maximum ext voltage	-2 V to +3.3 V		
Jitter (int. reference/int. clock)	< 10 ps rms (5ps typ.)		

Related Literature

• Agilent ParBERT 81250 Parallel Bit Error Ratio Tester. Product Overview

• Agilent ParBERT 81250 13.5 Gb/s Parallel Bit Error Ratio Test Platform, Photocard

Publication Number

5968-9188E

5988-9201EN

Agilent Technologies' Test and Measurement Support, Services, and Assistance

Agilent Technologies aims to maximize the value you receive, while minimizing your risk and problems. We strive to ensure that you get the test and measurement capabilities you paid for and obtain the support you need. Our extensive support resources and services can help you choose the right Agilent products for your applications and apply them successfully. Every instrument and system we sell has a global warranty. Support is available for at least five years beyond the production life of the product. Two concepts underlie Agilent's overall support policy: "Our Promise" and "Your Advantage."

Our Promise

Our Promise means your Agilent test and measurement equipment will meet its advertised performance and functionality. When you are choosing new equipment, we will help you with product information, including realistic performance specifications and practical recommendations from experienced test engineers. When you use Agilent equipment, we can verify that it works properly, help with product operation, and provide basic measurement assistance for the use of specified capabilities, at no extra cost upon request. Many self-help tools are available.

Your Advantage

Your Advantage means that Agilent offers a wide range of additional expert test and measurement services, which you can purchase according to your unique technical and business needs. Solve problems efficiently and gain a competitive edge by contracting with us for calibration, extra-cost upgrades, out-of-warranty repairs, and onsite education and training, as well as design, system integration, project management, and other professional engineering services. Experienced Agilent engineers and technicians worldwide can help you maximize your productivity, optimize the return on investment of your Agilent instruments and systems, and obtain dependable measurement accuracy for the life of those products.

Agilent Email Updates

www.agilent.com/find/emailupdates

Get Free Email Updates

Keep up to date with Agilent's free Email Updates. As a subscriber, you will receive regular, customized email updates on the topics you select. Updates cover support, products and services, applications, promotions, events, and other areas. It is easy to unsubscribe or change your preferences. Subscribe today: http://www.agilent.com/find/emailupdates.

Agilent is committed to respecting and protecting your privacy. Our Privacy Statement at http://www.agilent.com/go/privacy describes our commitment to you. Please direct any questions about Agilent's privacy program to privacy_advocate@agilent.com.

By internet, phone, or fax, get assistance with all your test & measurement needs

Online assistance: www.agilent.com/find/assist

Phone or Fax

United States: (tel) 800 452 4844

Canada:

(tel) 877 894 4414 (fax) 905 282 6495

China:

(tel) 800 810 0189 (fax) 800 820 2816

Europe:

(tel) (31 20) 547 2323 (fax) (31 20) 547 2390

Japan:

(tel) (81) 426 56 7832 (fax) (81) 426 56 7840

Korea:

(tel) (82 2) 2004 5004 (fax) (82 2) 2004 5115

Latin America:

(tel) (305) 269 7500 (fax) (305) 269 7599

Taiwan:

(tel) 0800 047 866 (fax) 0800 286 331

Other Asia Pacific Countries:

(tel) (65) 6375 8100 (fax) (65) 6836 0252

Email: tm_asia@agilent.com

Product specifications and descriptions in this document subject to change without notice.

© Agilent Technologies 2003 Printed in Germany, July 31st, 2003 5988-9203EN

